Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In a random-scattering system, the deposition matrix maps the incident wavefront onto the internal field distribution across a target volume. The corresponding eigenchannels have been used to enhance the wave energy delivered to the target. Here, we find the sum rules for the eigenvalues and eigenchannels of the deposition matrix in any system geometry: including two- and three-dimensional scattering systems, as well as narrow waveguides and wide slabs. We derive a number of constraints on the eigenchannel intensity distributions inside the system as well as the corresponding eigenvalues. Our results are general and applicable to random systems of arbitrary scattering strength as well as different types of waves including electromagnetic waves, acoustic waves, and matter waves.more » « less
-
Remitted waves are used for sensing and imaging in diverse diffusive media from the Earth’s crust to the human brain. Separating the source and detector increases the penetration depth of light, but the signal strength decreases rapidly, leading to a poor signal-to-noise ratio. Here, we show, experimentally and numerically, that wavefront shaping a laser beam incident on a diffusive sample enables an enhancement of remission by an order of magnitude at depths of up to 10 transport mean free paths. We develop a theoretical model which predicts the maximal remission enhancement. Our analysis reveals a significant improvement in the sensitivity of remitted waves to local changes of absorption deep inside diffusive media. This work illustrates the potential of coherent wavefront control for noninvasive diffuse wave imaging applications, such as diffuse optical tomography and functional near-infrared spectroscopy.more » « less
-
We experimentally and numerically study the fluctuations and correlations of transmission eigenchannel profiles in diffusive media. We find that high-transmission profiles exhibit low realization-to-realization fluctuations and significant correlations exist between low-transmission profiles.more » « less
An official website of the United States government
